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Abstract The encoding of mechanical stimuli into ac-
tion potentials in two types of spider mechanorecep-
tor neurons is modeled by use of the principal dynamic
modes (PDM) methodology. The PDM model is equiv-
alent to the general Wiener–Bose model and consists
of a minimum set of linear dynamic filters (PDMs), fol-
lowed by a multivariate static nonlinearity and a thresh-
old function. The PDMs are obtained by performing
eigen-decomposition of a matrix constructed using the
first-order and second-order Volterra kernels of the sys-
tem, which are estimated by means of the Laguerre
expansion technique, utilizing measurements of pseu-
dorandom mechanical stimulation (input signal) and
the resulting action potentials (output signal). The static
nonlinearity, which can be viewed as a measure of the
probability of action potential firing as a function of the
PDM output values, is computed as the locus of points
of the latter that correspond to output action potentials.
The performance of the model is assessed by comput-
ing receiver operating characteristic (ROC) curves, akin
to the ones used in decision theory and quantified by
computing the area under the ROC curve. Three PDMs
are revealed by the analysis. The first PDM exhibits a
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high-pass characteristic, illustrating the importance of
the velocity of slit displacement in the generation of ac-
tion potentials at the mechanoreceptor output, while the
second and third PDMs exhibit band-pass and low-pass
characteristics, respectively. The corresponding three-
input nonlinearity exhibits asymmetric behavior with
respect to its arguments, suggesting directional depen-
dence of the mechanoreceptor response on the mechan-
ical stimulation and the PDM outputs, in agreement to
our findings from a previous study (Ann Biomed Eng
27:391–402, 1999). Differences between the Type A and
B neurons are observed in the zeroth-order Volterra
kernels (related to the average firing), as well as in the
magnitudes of the second and third PDMs that perform
band-pass and low-pass processing of the input signal,
respectively.

1 Introduction

Mechanoreceptors perform the detection and transduc-
tion of mechanical stimuli in many types of animal tissue,
providing many inputs to the central nervous system. In
addition to sensory functions, such as hearing, touch and
balance, mechanoreceptors are involved in regulatory
mechanisms in the cardiovascular, respiratory and renal
systems. Mechanotransduction usually involves at least
three stages of signal processing: mechanical coupling of
the stimulus to the sensory cell membrane, transduction
of the membrane deformation into a receptor current,
and encoding of the receptor current into action poten-
tials (French 1992). In order to accommodate a broad
range of naturally occurring stimuli, mechanoreceptors
are characterized by adaptive properties with respect
to gain and operating range and they can subsequently
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exhibit a wide range of firing patterns that are matched
to their functions.

The extraction of mathematical/computational mod-
els that can accurately predict the responses of mechano-
receptors to a wide range of physiological stimuli can
lead to a better understanding of the underlying physi-
ology and the way in which the central nervous system
receives information from internal and external mechan-
ical events. They also allow the construction of larger
scale models that involve mechanoreceptor feedback.
However, the dynamic behavior of mechanoreceptors
is not yet fully understood due to their small physical
size and limited accessibility, as well as their complex and
nonlinear characteristics. In previous modeling studies
of mechanoreceptor function, linear techniques such as
transfer function analysis have been employed
(French et al. 1972; Koles and Smith 1974; Looft and
Baltensperger 1990; Matthews and Stein 1969). In Del
Prete et al. [2003] multiple logistic regression models
that included first-order interactions were employed to
study mouse skin mechanoreceptors. More recently,
nonlinear Volterra–Wiener models have been utilized
to describe the function of insect mechanoreceptors
(French and Korenberg 1989; French and Patrick 1994;
French and Marmarelis 1995; French et al. 2001;
Marmarelis et al. 1999), crab proprioceptors (DiCaprio
2003; Gamble and DiCaprio 2003), locust propriocep-
tors (Kondoh et al. 1995), as well as the encoding of
tactile stimuli in the barrel cortex of mice (Webber
and Stanley 2004). The aforementioned have included
both models that incorporated prior electrophysiologi-
cal knowledge about specific receptors (e.g., French and
Patrick 1994) and “black-box” models that did not as-
sume any prior knowledge about structural characteris-
tics (e.g., Marmarelis et al. 1999; Gamble and DiCaprio
2003).

In the present study we model the dynamic transduc-
tion of mechanical stimuli into action potentials in two
types of mechanoreceptor neurons from a spider lyri-
form organ that are morphologically similar but exhibit
different dynamic characteristics. Type A neurons are
rapidly adapting and produce only one or two action
potentials in response to step electrical or mechanical
stimuli, while Type B neurons adapt more slowly and
produce a burst of many action potentials with similar
stimuli (Seyfarth and French 1994).

For this purpose, we employ the principal dynamic
mode (PDM) methodology for spike-output systems
(Marmarelis 1997, 2004; Marmarelis and Orme 1993).
The PDM method is based on the general Wiener–Bose
model (Bose 1956) and aims to extract the most sig-
nificant dynamic components of a nonlinear system in
the form of a minimum set of linear filters that process

the input, after estimating its first and second-order
Volterra kernels (Marmarelis 1997). The PDM outputs
feed a multiple-input static nonlinearity and a subse-
quent threshold function to yield the output action
potentials. We present herein the obtained PDM models
for both neuron types in order to examine whether the
aforementioned differences between them are reflected
in the form of the dynamics estimated from pseudo-
random mechanical stimulation. This study extends our
previous findings employing the PDM methodology to
model the dynamics of the conversion of mechanical
displacements into transmembrane receptor current and
potential in a spider mechanoreceptor (Marmarelis et al.
1999).

2 Methods

2.1 Animals and preparations

Animal protocols were approved by the Dalhousie
University Committee on Laboratory Animals. Adult
spiders, Cupiennius salei, of either sex were taken from a
laboratory colony. The preparation for mechanical stim-
ulation of the sensory neurons has been described be-
fore (Seyfarth and French 1994; Juusola et al. 1995). A
concave piece of cuticle containing the intact VS-3 lyr-
iform organ, was dissected from the patella of an auto-
tomized leg and mounted on a custom designed holder.
The neurons were visually identified under a dissecting
microscope and penetrated with microelectrodes from
above. Dissection and all experiments were performed
in spider saline (Sekizawa et al. 1999: 223 mM NaCl,
6.8 mM KCl, 8 mM CaCl2, 5.1 mM MgCl2, 10 mM HE-
PES, pH 7.8). All chemicals were obtained from SIGMA
(Oakville, ON).

2.2 Recording and stimulation

The discontinuous (switching) single electrode current-
clamp technique (Finkel and Redman 1984) was used
to record cell membrane potentials with a SEC-10L
amplifier (NPI Electronic, Tamm, Germany). Borosil-
icate glass microelectrodes were pulled by a horizon-
tal puller (P2000, Sutter Instrument Co., Novato, CA,
USA), filled with 3 M KCl, and coated with petroleum
jelly to decrease stray capacitance (Juusola et al. 1997).
The electrode resistances were 45–70 M� with time con-
stants of 1–3 µs in spider saline. Switching frequencies of
20–23 kHz were used with a duty cycle of 1:8 for current
passing:voltage recording.
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For mechanical stimulation, a piezoelectric stimulator
with position control feedback (LVPZ translator, PZT
controller; Polytec Physik-Instrumente, Waldbronn,
Germany) was mounted on a three-dimensional micro-
manipulator that could position the tip of the stimulator
probe (diameter ∼50 µm) beneath the outer surface of
the VS-3 slits. For electrical stimulation, current was
injected directly via the amplifier. The experimental
arrangement was mounted on gas-driven vibration iso-
lation table (Technical Manufacturing, Peabody, MA,
USA).

Pseudorandom Gaussian white noise was generated
by a digital computer via a 33-bit binary sequence
algorithm and a 12-bit digital-to-analog converter, and
filtered by a nine-pole active filter so that the power
spectrum was below 1% of its low frequency asymp-
tote at frequencies above 300 Hz. This cutoff frequency
was based on the experimental limitations imposed by
the combination of the microelectrode amplifier, the
switching current clamp technique and the membrane
time constant. Mechanical displacement was sensed by
the position transducer in the piezoelectric stimulator,
which had a low-pass characteristics with a corner
frequency of ∼80 Hz. Electric current stimuli were
recorded directly from the amplifier current output.
Membrane potentials, including action potentials, were
recorded from the amplifier. Each signal was sampled at
50 kHz by an independent 12-bit analog-to-digital con-
verter to avoid sampling delays between channels. The
duration of each recording was approximately 80 s.

2.3 Data pre-processing

Action potentials were separated from the underlying
continuous membrane potentials by an algorithm that
identified action potentials as the potential increasing
and then decreasing by a fixed amplitude within less
than 2 ms. The fixed amplitude was in the range between
15 and 20 mV. All separations were inspected visually,
together with the original recording, to ensure that the
algorithm functioned properly. Separated action poten-
tials were stored as times of occurrence, while the gap
caused by action potential separation was filled by linear
interpolation. Action potential signals were digitally fil-
tered by convolution with the sin(x)/x function to band-
limit them to the range 0–500 Hz and produce a regularly
sampled (1 ms interval) signal. This filter characteristic
was chosen because it has a flat frequency response,
avoids additional filtering of the sampled analog input
signal and can be easily and efficiently implemented
(French and Holden 1971). Sampled analog signals of
mechanical displacement were digitally re-sampled by
averaging to give a 1 ms sample interval.

2.4 Model estimation

The general Wiener–Bose model of a nonlinear sys-
tem (Bose 1956) is shown in Fig. 1. The discrete-time
input signal x(n) is convolved with the linear filters
{L1, L2, . . . , LK}, i.e.:

ui(n) =
Mi∑

m=0

li(m)x(n − m), i = 1, 2, . . . , K, (1)

where {l1(m), l2(m), . . . , lK(m)} are the impulse respon-
ses of these filters and M is the system memory. The
linear filter outputs are then fed into a multiple-input
static nonlinearity, the output of which is given by

v(n) = f [u1(n), u2(n), . . . , uK(n)]. (2)

In the case of a binary model output, the latter is com-
puted by comparing the static nonlinearity output to a
threshold p:

y(n) =
{

1 if v(n) − p > 0,
0 if v(n) − p � 0.

(3)

The linear filter impulse responses {li(m)} are selected
from an appropriate basis (e.g., the Laguerre basis) and
the static nonlinearity f is estimated from the input–
output data. The PDM methodology (Marmarelis and
Orme 1993; Marmarelis 1997) aims at extracting a mini-
mum set of linear filters that remain functionally equiva-
lent to the Wiener–Bose model of Fig. 1, which constitute
the PDMs of the system. This leads to compact repre-
sentations that facilitate model interpretation, which is
important in the case of physiological systems, as in the
present study.

The PDMs can be extracted from the estimates of the
Volterra kernels of the system, as indicated below. The
general discrete-time Volterra model for a finite-mem-
ory, Qth order nonlinear system is

y(n) =
Q∑

q=0

{ ∑

m1

. . .
∑

mq

kq(m1, . . . , mq)

x(n − m1) . . . x(n − mq)

}
, (4)

where kq(m1, .., mq) are the linear (q = 1) and non-
linear (q > 1) Volterra kernels of the system, which
describe the linear and nonlinear dynamic effects of the
input on the output, respectively. A practical way to esti-
mate the kernels by employing stimulus-response data
(in our case, mechanical displacements and the resulting
action potentials) data is the Laguerre expansion tech-
nique (Marmarelis 1993), which expands the kernels in
terms of the discrete-time Laguerre orthonormal basis
and uses least-squares fitting to estimate the expansion
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Fig. 1 Principal Dynamic Mode (PDM) model of action poten-
tial firing in a spider mechanoreceptor. The PDM model is equiva-
lent to the Wiener–Bose model with a minimum set of linear filters
L1, L2, . . . , Lm. The input signal (mechanical displacement) is fed

into the PDMs of the system, the outputs of which are combined
into a multiple-input static nonlinearity and threshold function to
produce the model output

coefficients. One way to estimate the PDMs from the
first and second-order kernel estimates is to construct
the matrix (Marmarelis 1997):

R =
[

k0
1
2 kT

1
1
2 k1 k2

]
(5)

which has a size of (M + 2) × (M + 2), where M is the
kernel memory and k0, k1, k2 are the zeroth, first and
second-order Volterra kernels, respectively. R is real
symmetric, therefore its eigenvalues are always real.
Note that in this case k1 and the eigenvectors of k2
were found to be linearly dependent, therefore we were
able to reduce R to k2. By selecting the most important
eigenvalues λi of R on the basis of their magnitude, the
corresponding orthonormal eigenvectors μi define
the PDMs of the system, i.e., the impulse responses of
the minimum set of linear filters of Fig. 1 (Marmarelis
1997, 2004; Marmarelis and Orme 1993). The number
of significant eigenvalues determines the number of the
PDMs sufficient to describe the system dynamics.
Estimates of higher order kernels can be used for this
purpose as well, using singular-value decomposition
(Marmarelis 2004). However, this was not found
necessary in this application.

The multivariate static nonlinearity f (u1, u2, . . . , uK)

is defined as the locus of points (u1, u2, . . . , uK) that cor-
respond to output action potentials. Therefore, f was
constructed by first convolving the input with the PDMs,
separating the space of the PDM outputs (u1, u2, . . . , uK)

into K-dimensional bins, counting the number of points
corresponding to output action potentials and divid-
ing this number by the total number of points within
each bin. To account for the 5 ms refractory period be-
tween the firing of two consecutive action potentials,
we excluded the corresponding points (i.e., they were
not counted towards the number of total points). Thus,

f (u1, u2, . . . , uK) yields a measure of the probability of
action potential firing as a function of the PDM outputs.

The PDM model performance (in terms of predicting
output action potentials correctly) is assessed by con-
structing receiver operating characteristic (ROC)curves.
ROC curves were initially introduced in signal detec-
tion theory (Egan 1975) and have been employed also
in medical decision applications (McFall and Treat 1999;
Swets and Pickett 1992) as well as in a similar context
to the present paper (Del Prete et al. 2003). In our case,
ROC curves are plots of the true positive fraction as a
function of the false positive fraction achieved by the
PDM model for all output threshold p values between 0
and 1. The true positive fraction is defined as the number
of predicted true positives divided by the total number
of true output action potentials for a specific p value
and the false positive fraction is defined as the number
of predicted false positives divided by the number of
maximum possible false positives. Therefore, the ROC
curves were constructed by computing the binary output
predicted by the PDM model for all values of threshold
p between 0 and 1, counting the number of true and false
positives by comparing the number and location of the
predicted action potentials to those of their true coun-
terparts and calculating the corresponding fractions. The
5 ms refractory period was taken into account in the pre-
dicted PDM output by not allowing consecutive action
potentials in the model output within this period. For the
same reason, predicted action potentials within ±2 ms of
true output action potentials were considered true pos-
itives. Finally, as a measure of the model performance,
we computed the area under the ROC curve, which lies
between 0 and 1. Area values that are closer to 1 denote
better performance.

Of the approximately 80,000 data points (sampled at
1 kHz) that were available for each of the four differ-
ent neurons, segments of 5,000 points (corresponding to
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Fig. 2 Representative data
segments utlilized for model
estimation for Type A and
Type B neurons. Top panels
pseudorandom mechanical
stimulation (in µm), middle
panels output action
potentials (raw data), bottom
panels output action
potentials (binary data)
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150–250 output action potentials) were used to estimate
the Volterra kernels and PDMs of the system. Larger
sample sizes were found to yield similar kernel esti-
mates. Therefore, 5,000 data points (5 s) were deemed
adequate for estimation purposes. The remaining data
points were employed to construct the static nonlin-
earity by mapping the PDM output values onto the
output action potentials (60,000 points) and for model
validation (15,000 points). For comparison purposes and
in order to further quantify the neuron properties for
encoding different stimulus parameters, we also
performed multiple linear least squares regression anal-
ysis on the data segments used to estimate the Volter-
ra kernels, using displacement, displacement velocity as
well as displacement acceleration as inputs (regressors)
and the resulting action potentials as the output of the
regression model. Estimates of velocity and acceleration
at each time point were obtained by employing a simple
central difference rule.

3 Results

Data from four neurons (2 Type A and 2 Type B) were
used for the analysis. Representative segments (length
200 ms) of the stimulus–response waveforms employed
to estimate the PDM model are shown in Fig. 2 for both
types of neurons. The random mechanical stimulation is
shown along with the resulting output action potentials,

in both the raw and processed (binary) waveforms. Type
B neurons tended to fire more action potentials under
pseudorandom stimulation, even though the stimulus
variability was larger for the Type A neurons. The num-
bers of action potentials during the 80 s recordings were
3,462 and 2,205 for the Type B neurons (with stimulus
standard deviations of 0.38 and 0.39 µm, respectively),
compared to 1,463 and 2,375 for the Type A neurons
(stimulus standard deviations: 1.05 and 0.59 µm). The
reason for the discrepancies in stimulus power is that
the latter was optimally tuned to each neuron, due to
the difficulty in aligning the stimulator with the slit.

The zeroth-order Volterra kernel values (the constant
term of the model related to the average firing rate) are
given in Table 1 for the Type A and B neurons, aver-
aged over ten different data segments with a length of
5,000 points (i.e., 5 s) from each neuron. The values of
k0 were considerably larger for the Type B neurons.
The first-order Volterra kernels for one Type A and one
Type B neuron, averaged over ten different data seg-
ments, are shown in Fig. 3 in the time and frequency

Table 1 Estimated zeroth-order Volterra kernels for Type A and
B neurons, averaged over ten 5 s data segments

Type A Type B

Neuron 1 Neuron 2 Neuron 1 Neuron 2

k0 0.018 ± 0.001 0.004 ± 0.001 0.031 ± 0.004 0.038 ± 0.004

Values are mean ± SE
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Fig. 3 First-order kernels for one Type A and one Type B neuron in the time and frequency (FFT magnitude) domains, averaged over
ten data segments with a length of 5 s. Solid line mean, Dotted line SE. Note the high-pass characteristic in the frequency domain

(fast fourier transform (FFT) magnitude) domains. The
first-order kernels were consistent among different data
segments, as shown by the tight error bounds, and ex-
hibit fast dynamics (memory of 6–7 ms) as well as a
high-pass characteristic with a frequency peak at around
200 Hz, implying that the linear dynamics depend mostly
on the slit displacement velocity. Nonetheless, the fact
that the negative undershoot was smaller in magnitude
than the initial positive peak indicates that the first-order
(linear) dynamics respond to the displacement magni-
tude as well (in addition to the displacement velocity).
The first-order kernels were also found to be similar be-
tween the two neuron types, with the Type B neurons
exhibiting a slightly larger resonance around 200 Hz.
The estimated second-order Volterra kernels for the

two neuron types are shown in Fig. 4 in the two-dimen-
sional time and frequency domains (two-dimensional
FFT magnitude). They also exhibit a high-pass char-
acteristic (like their first-order counterparts) and were
generally similar for the two neuron types. However,
higher magnitude values were observed for the Type B
neuron below [200 Hz, 200 Hz] in the two-dimensional
frequency plane—a fact that may have important ef-
fects on the respective nonlinear responses, since the
input power was primarily below 200 Hz.

The improvement achieved in predicting the output
waveform by employing nonlinear models is illustrated
in Fig. 5 for a representative 200 ms data segment from
a Type B neuron. The model prediction achieved by a
linear model (blue) is shown along with the prediction
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Fig. 4 Second-order kernels
for one Type A and one Type
B neuron in the time and
two-dimensional frequency
domains (i.e., magnitude of
two-dimensional FFT),
averaged over ten data
segments with a length of 5 s.
Note that the Type B
second-order kernel exhibits
more power below [200 Hz,
200 Hz] in the bi-frequency
plane

Fig. 5 Representative output prediction achieved by linear and
nonlinear Volterra models for a 200 ms segment taken from a Type
B neuron. Blue linear model prediction, green second-order model
prediction, red third-order model prediction. Note the significant
improvement achieved by the nonlinear models

achieved by second and third-order models (green and
red, respectively). The inclusion of nonlinear terms im-
proved the model performance considerably, both in
terms of predicting the output action potentials and cap-
turing the rectifying characteristic of the output signal
(note the areas between action potentials). The normal-
ized mean square error (NMSE), defined as the sum
of squares of the model prediction residuals divided

Table 2 Magnitude of the three significant eigenvalues for Type
A and B neurons, averaged over ten 5 s data segments

Type A Type B

Neuron 1 Neuron 2 Neuron 1 Neuron 2

λ1 0.364 ± 0.015 0.928 ± 0.067 1.721 ± 0.204 1.310 ± 0.205
λ2 0.024 ± 0.004 0.076 ± 0.009 0.301 ± 0.028 0.134 ± 0.028
λ3 0.003 ± 0.001 0.015 ± 0.001 0.053 ± 0.006 0.020 ± 0.004

Values are mean ± SE
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Fig. 6 Representative
PDMs, scaled by the square
root of the corresponding
eigenvalue, obtained from the
binary output waveforms (see
Fig. 2) for one Type A and
one Type B neuron in the time
and frequency domains. The
first, second and third PDM
exhibits high-pass, band-pass
and low-pass characteristics,
respectively. Note that the
magnitudes of the second and
third PDMs are larger for the
Type B neuron
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by the sum of squares of the true output, is high due
to the binary nature of the output signal (around 90%
for linear models and 75–80% for nonlinear models).
Third-order models reduced the prediction NMSE by
around 5% compared to second-order models. This is
also observed in Fig. 5, where the third-order terms build
on the second-order model prediction without introduc-
ing new spike locations. However, the performance of
second and third-order models after the calculation of
the static nonlinearity, as assessed by the area under the
ROC curve, was found to be comparable (see below).

Eigen decomposition of the matrix R given by Eq. (5)
revealed three significant eigenvalues, the correspond-
ing eigenvectors of which yielded the three PDMs µ1, µ2
and µ3. The magnitude of the eigenvalues is given in
Table 2 for all four neurons, averaged over the ten
5 s data segments. Type B neurons were characterized
by larger eigenvalue magnitudes. Representative PDMs
are shown in Fig. 6 in the time and frequency domains
for the two neurons of Figs. 3, 4, after scaling by the

square root of the corresponding eigenvalue. The first
(most significant) PDM has a high-pass (differentiating)
characteristic, suggesting that its output depends pri-
marily on the slit displacement velocity and secondarily
on the displacement magnitude. The second PDM has
a band-pass characteristic with a peak at around 180 Hz
and a high-frequency plateau, implying dependence on
the magnitude of slit displacement (position) in addi-
tion to the resonant behavior around 180 Hz. The third
PDM has a low-pass characteristic that implies depen-
dence only on the integrated (cumulative) slit displace-
ment/position over a 6 ms time-window. The magnitude
of the first PDM is similar between the two neuron
types (with the type B neuron exhibiting a greater initial
slope below 180 Hz), but the magnitude of the other two
PDMs tended to be larger for the Type B neurons.

For comparison purposes and in order to verify that
the obtained dynamic characteristics were not affected
by the output action potential data preprocessing, we
also estimated the three PDMs from the raw output
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data (middle panels of Fig. 2). Their frequency response
characteristics were similar to those shown in Fig. 6,
except that the peak of the second PDM was located at a
slightly lower frequency (i.e., 150 Hz instead of 180 Hz)
and the first PDM reached its plateau earlier (around
200 Hz, instead of around 350 Hz. Therefore, the subse-
quent analysis is based on the PDMs obtained from the
processed (binary) output waveforms.

The results of the multiple linear regression analy-
sis for the data segments used to estimate the Volterra
kernels are summarized in Table 3, where we show the
values of the regression coefficients, normalized by the
RMS value of the corresponding input, for all four neu-
rons. The achieved NMSEs for the regression model
were equal to 92–93%, i.e., larger than their linear Vol-
terra model counterparts—note that the regression
model does not incorporate cumulative position infor-
mation—and considerably larger than their nonlinear
model counterparts, as expected due to the strong non-
linearities present in the system dynamics. The coeffi-
cient values imply stronger dependence on displacement
position for all neurons, followed by displacement veloc-
ity and then acceleration for three out of four neurons.
It is interesting to note that the inclusion of acceleration
terms in the regression model improved the NMSEs by
1–1.5%, except in the case of one neuron (Type B, Neu-
ron 2), for which the improvement was not significant
(mean NMSEs 92.82 and 92.78%, respectively, p > 0.15
for eight out of ten data segments). This was reflected on
the magnitude of the coefficients, since the acceleration
coefficient for this neuron exhibited small magnitude
values and was mostly positive, whereas for the rest of
the neurons it was negative and exhibited larger magni-
tudes.

In order to illustrate the combinations of PDM output
values that gave rise to action potentials at the mecha-
noreceptor output, we show three-dimensional scatter

Table 3 Multiple linear regression coefficients between mecha-
noreceptor displacement, displacement velocity and displacement
acceleration (inputs) and action potential data (output), normal-
ized by the corresponding input RMS values and averaged over
ten 5 s data segments

Type A Type B

Neuron 1 Neuron 2 Neuron 1 Neuron 2

β0 0.038 ± 0.001 0.054 ± 0.002 0.073 ± 0.003 0.069 ± 0.004
β1 2.006 ± 0.052 2.354 ± 0.059 2.721 ± 0.084 3.435 ± 0.127
β2 1.489 ± 0.058 2.010 ± 0.114 1.670 ± 0.180 2.475 ± 0.188
β3 −0.920 ± 0.064 −1.377 ± 0.055 −1.876 ± 0.076 0.183 ± 0.077

Values are mean ± SE

β0 constant term, β1 displacement term, β2 velocity term, β3 accel-
eration term

plots of the PDM output values that corresponded to
action potentials (blue) along with those that did not
(red) for the Type A and Type B neurons in Figs. 7 and 8,
respectively, as well as their corresponding two-dimen-
sional projections on the {u1, u2} and {u1, u3} planes
in Figs. 9 and 10. The construction of the three-input
nonlinear function f (u1, u2, u3) was based on these scat-
ter plots through three-dimensional histogramming that
yielded the “Probability of Firing Function” (PFF) for
each neuron. The form of the scatter plots and their
projections indicates that both neuron types exhibit

Fig. 7 Scatter plot of the PDM output values that correspond to
action potentials (blue) for a Type A neuron. Note the strongly
directional behavior with respect to the output of the second PDM
(u2), with action potentials corresponding only to negative u2
values

Fig. 8 Scatter plot of the three PDM output values that corre-
spond to action potentials (blue) for a Type B neuron. Note the
similarity to the mapping of Fig. 7 (Type A neuron)
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Fig. 9 Projection of the three-dimensional scatter plot of Fig. 7 on the {u1, u2} and {u1, u3} planes (left and right panels, respectively).
Note the strongly directional dependence on u2

Fig. 10 Projection of the three-dimensional scatter plot of Fig. 8 on the {u1, u2} and {u1, u3} planes (left and right panels, respectively)

directionality with respect to the PDM output values
(e.g., output action potentials corresponded to both pos-
itive and negative values of u1, u3, but almost all the out-
put action potentials corresponded to negative
values of u2).

Since f (u1, u2, u3) is three-dimensional, we plot its
one-dimensional projections (marginal probabilities) on
{ui} fM(ui), where i = 1, 2, 3, in Fig. 11 for one Type A
and one Type B neuron. Their form is similar for the
two neurons, in agreement to the observations made for
the scatter plots. The first projection fM(u1) is asymmet-
ric with respect to the magnitude of u1 around zero,
exhibiting significantly larger values for increasing u1
positive values, i.e., it depends on both direction and
magnitude of the slit displacement velocity. The second

projection fM(u2) is strongly asymmetric with respect
to its argument, yielding significant values for negative
u2 values only and implying directional dependence on
slit displacement position. On the other hand, the mar-
ginal probability fM(u3) is symmetric around zero; there-
fore it depends only on the magnitude of the cumulative
slit displacement over a short sliding window. Overall,
the asymmetric behavior was more pronounced for the
output of the band-pass PDM u2. Similar observations
were made for the remaining two neurons as well.

The ROC curves for the in-sample data (i.e., the
points that were used to compute the PFF) and for the
validation (out-of-sample) data for a Type B neuron are
shown in Fig. 12 for a histogramming bin size of 0.1.
The ROC curves for the rest of the neurons were found
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Fig. 11 Projections of the three-dimensional static nonlinearity
on (i = 1, 2, 3; one-dimensional marginal probability functions)
for one Type A and one Type B neuron. Note the strongly

asymmetric dependence on u1 and u2 (outputs of velocity and
position encoding PDMs) and the symmetric dependence on u3
(output of cumulative position encoding PDM)

Fig. 12 ROC curves for a Type B neuron for two (red) and three (black) PDM models. The use of three PDMs improves the model
performance considerably

to be similar to those of Fig. 12. When three PDMs
were utilized (black), i.e., a three-dimensional PFF was
constructed, the performance improved considerably
compared to two PDMs (red), which yielded a
two-dimensional PFF. The ROC curve is a suitable
measure of model performance in terms of predicting
output action potentials, since it yields an overall assess-
ment of performance for all values of the threshold p,
which can be quantified by calculating the area under
the curve. The values of the area under the ROC curves
of Fig. 12 were equal to 0.930/0.957 (in-sample data)
and 0.938/0.960 (validation data) for two/three PDMs,
respectively. The model performance for the validation
data set is thus comparable to its in-sample counter-
part, corroborating the validity of the modeling results.

The corresponding values for all four neurons are given
in Table 4 for three different histogramming bin sizes
(0.02, 0.05 and 0.1). For smaller bin sizes (i.e., finer
resolution in the PFF computation), the performance
improved for the in-sample data but degrades consid-
erably for the validation data (Table 4). This is to be
expected, since the number of data points correspond-
ing to action potentials was low compared to the total
number of data points. Consequently, we did not have
enough information in the data in order to increase the
PFF resolution while, at the same time, maintaining the
model generalization capability. The best overall per-
formance for both in-sample and validation data was
observed for a bin size of 0.1. For comparison purposes,
the values of the area under the ROC curve achieved
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Table 4 Area under the ROC curve for output action potential
prediction for different histogramming bin sizes, Type A and B
neurons

Bin size Type A Type B

Neuron 1 Neuron 2 Neuron 1 Neuron 2

Linear
In-sample – 0.987 0.952 0.912 0.948
Validation – 0.989 0.953 0.919 0.956

µ1, µ2
In-sample 0.02 0.986 0.942 0.933 0.960

0.05 0.986 0.939 0.938 0.964
0.1 0.987 0.939 0.930 0.966

Validation 0.02 0.986 0.919 0.932 0.953
0.05 0.987 0.933 0.941 0.958
0.1 0.988 0.936 0.938 0.958

µ1, µ2, µ3
In-sample 0.02 0.995 0.987 0.975 0.974

0.05 0.990 0.973 0.960 0.971
0.1 0.989 0.971 0.957 0.973

Validation 0.02 0.945 0.890 0.910 0.853
0.05 0.989 0.959 0.956 0.962
0.1 0.989 0.969 0.960 0.965

by linear Volterra models are also given. Interestingly,
nonlinear models improve the performance marginally
for one Type A neuron, while this improvement is sub-
stantial for all other neurons, especially for the two Type
B neurons. This suggests that the nonlinear component
is stronger in the latter.

The action potential prediction achieved by the model
is shown in Fig. 13 for a representative 150 ms validation

Fig. 13 Representative output action potential prediction for a
Type B neuron for two and three PDM models. The three PDM
nonlinear model yields better performance

segment taken from a Type B neuron. The predicted
output action potential traces shown here correspond
to a threshold of 0.2. The number and location of output
action potentials were predicted with accuracy, with the
three-PDM model performing better.

4 Conclusions and discussion

The presented results demonstrate that the encoding of
mechanical stimuli into action potentials in two types
of mechanoreceptor neurons in a spider lyriform organ
can be described by a nonlinear model that consists of
three PDMs (linear filters) followed by a three-dimen-
sional static nonlinearity and a threshold function. This
model is able to predict the generated action potentials
in response to broadband mechanical stimuli accurately,
as quantified by the computed ROC curves (which mea-
sure the true-positive vs. false-positive performance of
the model in predicting output spikes). The form of the
three PDMs suggests that the dynamics of these me-
chanoreceptors exhibit high-pass, band-pass and low-
pass characteristics. This implies that action potential
generation in these mechanoreceptors depends on both
position and velocity of the slit displacement, as well
as on the cumulative displacement over a short sliding
window. The effect of the displacement velocity appears
to be dominant. Moreover, the form of the static nonlin-
earity reveals that the generation of action potentials is
directionally selective, mainly with respect to the output
of the second (band-pass) PDM, for which it exhibits
half-wave rectification characteristics.

The dynamics of the two neuron types were gener-
ally similar, although some differences were observed
in the magnitude of the second (band-pass) and third
(low-pass) PDMs, which were found to be larger for
Type B neurons. Differences were also observed in the
frequency-domain slope of the first (high-pass) PDM
below 180 Hz, which may be significant for the over-
all response characteristics of the neuron, since most of
the mechanical stimulus power was below 180 Hz. The
constant component of the model (zeroth-order ker-
nel), which is related to the average firing rate, was also
found to be considerably larger for Type B neurons.
These observations extend our previous modeling stud-
ies of the transduction of mechanical stimuli into intra-
cellular receptor current and voltage (Marmarelis et al.
1999) and parallel cascade modeling of the encoding of
mechanical stimuli into action potentials (French et al.
2001).

The Volterra–Wiener approach has been employed
widely for modeling physiological systems (Marmarelis
2004). It is well-suited to the complexity of such systems,
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since it yields rigorous mathematical descriptions of
their dynamic behavior by utilizing input-output data,
without requiring any a priori assumptions about system
structure. In the case of sensory systems, Volterra–Wie-
ner models have been employed extensively in the visual
(Sakai 1992) and auditory systems (Eggermont 1993), in
addition to the study of mechanoreceptor function. The
general Volterra model of Eq. (1) can be viewed as a
generalization of the convolution operation, which de-
scribes the dynamic input–output relationship for linear
systems, to nonlinear systems. The first-order (linear)
Volterra kernel describes the linear effects of the sys-
tem input on the output, and the Qth order (Q > 1)
nonlinear kernel describes the effect of the interaction
of Q past values of the input on the present value of the
system output. Note that the first-order (linear) Volterra
kernel is not equivalent to the system impulse response
in this case, since the impulse response of a Volterra sys-
tem depends not only on the first-order kernel, but on
the diagonal points of the higher-order kernels as well.

Nonlinear models were found to improve the model
performance considerably, when compared to linear
models, in terms of both prediction NMSE (10–15%
reduction) and area under the ROC curve (Table 4).
As shown in Fig. 5, the third-order Volterra functional
terms further improved the output prediction of second-
order models by building on the spike locations without
inserting new false spike locations, thus increasing the
prediction SNR and resulting in about 5% reduction of
the prediction NMSE (from around 80 to 75%). How-
ever, second and third-order models yielded comparable
ROC curve area values. This may be attributed to the
fact that third-order models built mainly on the con-
tribution of second-order models to both true and false
positive spikes, without altering significantly the relation
between true and false positives. The improvement ob-
served for nonlinear models was more pronounced for
Type B neurons, implying a stronger nonlinear compo-
nent in the dynamics of the latter. This is corroborated
by the increase in the area under the ROC curve, which
was larger for Type B neurons than Type A neurons and
is in agreement with the observation that the magni-
tudes of the second and third PDMs, µ2 and µ3, which
reside mainly in the nonlinear dynamics, were larger for
the Type B neurons. Interestingly, linear models per-
formed better than the two-mode nonlinear models in
the case of Type A neurons (Table 4), due to the fact
that the nonlinear component was weaker in these neu-
rons and also to that the third PDM of Type A neurons
was found to explain a larger fraction of the system
dynamics. The latter was concluded by expressing the
first-order kernel as a linear combination of the first
two PDMs for both neuron types, whereby it was found

that the corresponding NMSE was considerably larger
for Type A neurons (representative values: 30% and
3% for Type A and B neurons, respectively). In other
words, the third PDM was more linearly independent
to the first two PDMs in the case of Type A neurons.
The presence of third-order nonlinearities in the mech-
anoreceptor function is also suggested by the form of
the calculated two-dimensional PFFs (not shown here),
which exhibited half-wave rectification characteristics.

The characteristics of the three PDMs suggest that
both Type A and B neurons are able to encode more
than one parameter of the slit displacement stimulus
(i.e., velocity, position and cumulative position). The first
PDM, which resembled the first-order Volterra kernel,
had a differentiating (high-pass) characteristic and en-
coded primarily the stimulus velocity—although some
position encoding also took place by virtue of the fact
that the positive and negative peak deflections of the
PDM in the time domain were not equal (they would be
equal in case of a strictly differentiating PDM). The sec-
ond and third PDMs had mixed band-pass and low-pass
characteristics, implying encoding of velocity (within a
preferred range defined by the pass-band), position and
cumulative position. The strong dependence of mecha-
noreceptor encoding on displacement position and
velocity was also confirmed by the results of the lin-
ear regression analysis (Table 3). The regression coeffi-
cient corresponding to position exhibited the largest
magnitude for all four neurons, followed by the velocity
coefficient for three out of four neurons. Moreover, the
incorporation of acceleration terms in the regression
model was found to improve the regression NMSEs
in three out of four neurons, implying that accelera-
tion encoding is also taking place. Note, however, that
the regression model does not take into account dy-
namic information such as cumulative position, which
was found to have a considerable effect; hence the
achieved performance is worse in terms of predicting
the mechanoreceptor output.

The obtained PDMs bear similarities to their coun-
terparts estimated from transmembrane receptor and
current recordings from spider mechanoreceptors (Mar-
marelis et al. 1999). However, in that previous study, two
significant PDMs were identified, with the first having
a low-pass characteristic (that was more pronounced
for potential than for current measurements) and the
second having a high-pass characteristic but residing
mainly in the nonlinear dynamics. On the other hand,
the two PDMs estimated from action potential encod-
ing in a cockroach tactile spine neuron were less simi-
lar and exhibited all-pass (i.e., position dependent) and
band-pass (with a resonant peak around 20 Hz) char-
acteristics, respectively (French and Marmarelis 1995).
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The presence of position, position-velocity, pure veloc-
ity and acceleration dependent afferents has been
also reported for proprioceptors in crab (Gamble and
DiCaprio 2003) and locust chordotonal organs
(Kondoh et al. 1995), where in addition the presence
of mixed velocity–acceleration sensitive afferents was
reported.

The scatterograms of Figs. 7, 8, 9, 10 show that the
mapping between the PDM output values and the result-
ing action potentials was similar in Type A and B neu-
rons, which is also reflected in the PFFs of Fig. 11.
The latter suggest that action potential encoding was
directionally selective mostly with respect to the pre-
ferred-velocity and position of the displacement, since
the marginal PFF fM(u2) was nonzero for negative values
of the second PDM output u2 only (Fig. 11, middle
panel). Moreover, asymmetric dependence with respect
to the primarily velocity-dependent PDM output u1
(Fig. 11, left panel), as well as symmetric dependence on
the cumulative position PDM output u3 (Fig. 11, right
panel), were also observed. The strong directional selec-
tivity with respect to position was also observed for the
transduction of mechanical stimuli into transmembrane
current and potential (Marmarelis et al. 1999).

The lack of strong differences between the dynamics
of Type A and B neurons has been reported previously
for parallel cascade estimates of linear and nonlinear
Volterra kernels (French et al. 2001). The discrepancy
observed between their estimated zeroth-order kernel
values may reflect their differences in the recovery from
Na+ channel inactivation. Voltage-activated sodium cur-
rent (INa) is primarily responsible for the leading edge
of the action potential in many neurons. While INa gen-
erally activates rapidly when a neuron is depolarized, its
inactivation properties vary significantly among differ-
ent neurons and it can occasionally exhibit slowly and
rapidly inactivating components within the same neu-
ron. In the case of Type A and B neurons, it has been
shown with voltage-clamp experiments (Torkkeli et al.
2001) that the differences in their response characteris-
tics are due primarily to the Na+ channel inactivation
properties and particularly the recovery from
inactivation, which was found to be significantly slower
in Type A neurons. The same was demonstrated by us-
ing a simplified Hodgkin–Huxley model (Torkkeli and
French 2002), where the firing patterns of Type A and
B neurons were reproduced by using different time
constants for the INa recovery from inactivation (120
and 40 ms, respectively), as well as different slope fac-
tors (5 and 9 mV, respectively). However, the fast INa
activation and inactivation dynamics, which have been
shown to be similar in Type A and B neurons with single
time constants of 2–3 and 5–10 ms, respectively (Torkkeli

et al. 2001), may dominate the obtained estimates in the
present study (the kernel memory was found to be about
10–15 ms). Therefore, we postulate that the different
characteristics of the INa recovery from inactivation are
reflected mainly on the zeroth-order model component.
We must also note that pseudorandom stimulation re-
sults in continuous action potential firing, therefore Na+
channels may not be inactivated or recover from inacti-
vation completely, as in the case of step stimulation used
in the aforementioned studies.

In conclusion, the PDM analysis provides a compact
representation of mechanoreceptor dynamics, which de-
scribes quantitatively their ability to encode multiple
features of mechanical stimuli and achieves excellent
performance in terms of predicting the resulting action
potentials. It can also assist in understanding and dis-
secting the underlying physiological mechanisms, when
combined with suitable experimental manipulation of
the relevant ionic processes.
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